- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bell, Rayna C (1)
-
Douglas, Ron H (1)
-
Fujita, Matthew K (1)
-
Gower, David J (1)
-
Quock, Rachel C (1)
-
Rich, Caitlyn (1)
-
Schott, Ryan K (1)
-
Streicher, Jeffrey W (1)
-
Thomas, Kate N (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Pupil constriction has important functional consequences for animal vision, yet the evolutionary mechanisms underlying diverse pupil sizes and shapes are poorly understood. We aimed to quantify the diversity and evolution of pupil shapes among amphibians and to test for potential correlations to ecology based on functional hypotheses. Using photographs, we surveyed pupil shape across adults of 1294 amphibian species, 74 families and three orders, and additionally for larval stages for all families of frogs and salamanders with a biphasic ontogeny. For amphibians with a biphasic life history, pupil shape changed in many species that occupy distinct habitats before and after metamorphosis. In addition, non-elongated (circular or diamond) constricted pupils were associated with species inhabiting aquatic or underground environments, and elongated pupils (with vertical or horizontal long axes) were more common in species with larger absolute eye sizes. We propose that amphibians provide a valuable group within which to explore the anatomical, physiological, optical and ecological mechanisms underlying the evolution of pupil shape.more » « less
An official website of the United States government
